SHAPEUP

TODAY
YOU WILL．．．

LEARN ABOUT LINE SYMMETRY AND ROTATIONAL SYMMETRY AND HOW THEY ARE RELATED．

STARTER ACTMMY

Project（or copy）these symbols（or similar ones）onto the board：

8く丸大＊类（ 区

Q：Which of these shapes and

 symbols do you recognise？Where have you seen them before？ Learners will be familiar with many of the symbols and will know what some of them refer to．They might give names for some of them，such as pentagram for the five－pointed star，although technically a pentagram shows the lines inside（ $\delta \hat{k}$ ）， and \boldsymbol{k} would be better described as a concave decagon．In the discussion，some cross－curricular links could be made（e．g．，with music and the＇sharp＇sign）．
Q：Are any of these shapes symmetrical？

Learners might interpret ＇symmetrical＇in different ways．They could come to the board so that they can point to features of the shapes to explain their meaning．（Or，harder， they could try to describe what they mean in words only．）They are likely to talk about turning the shapes over （reversing them：line or mirror
symmetry）and turning them around

Can you be creative in maths？Colin Foster believes that you can and that the topic of symmetry is rich with opportunities for learners to show their originality．．．
Constructing their own drawings gives learners the opportunity to be creative and independent，and helps them to see what features of shapes cause them to have line or rotational symmetry．

Learners of mathematics are often

 asked to state the number of lines of symmetry and the order of rotational symmetry of given two－dimensional shapes．This lesson turns that around and asks learners to invent shapes with particular symmetries．
MAN ACTMITES

1
SHADING FOUR SQUARES

Give learners a sheet of 1 cm $\times 1 \mathrm{~cm}$ squared paper and ask them to draw a 3 by 3 square．（Alternatively，you could give them a sheet with lots of 3 by 3 squares already drawn for them．）

Q：You＇ve got 9 little squares in the big square．You＇re going to make a design by shading exactly 4 of those 9 squares，but they can be whichever 4 you like．Can you shade 4 squares so that the finished drawing has 4 lines of symmetry？

There are 2 ways of doing it

Learners might think that answers like

INFO BAR

+ STRETCH THEM FURTHER

+LEARNERS WHO ARE COMFORTABLE WTH THE MAIN TASK IN THIS LESSON COULD TRY IT ON ISOMETRIC PAPER INSTEAD, DRAWINGA3 BY 3 BY 3 EOUILATERAL TRIANGLE CONTANING 9 SMALL EQUIIATERAL TRIANGLES. IF THEY ARE ALLOWED TO SHADE EXACTIY 4 OF THE SMALL TRIANGLES, WHAT POSSIBLENUMBERS OF LINES OF SYMMETRY AND ORDERS OF ROTATIONAL SYMMETRY CAN THEY CREATE THIS TIME?

+ ADDITIONAL RESOURCES

+A VERY NICE RESOURCE, PARTICULARLY FOR USE ON AN ELECTRONIC WHITEBOARD, IS AT TINYURL.COM/29SW8C, WHERE LEARNERS CAN MAKE THER DRAWINGS WHILE SEEING VARIOUS SYMMETRICAL VERSIONS (REFLECTIONS, ROTATIONS, ETC.) APPEARING IN REAL TIME. THIS CAN BE A GOOD STIMULUS FOR DISCUSSION IF LEARNERS ARE ASKED TO PREDICT WHAT WILL HAPPEN UNDER PARTICULAR CIRCUMSTANCES.

2 SHADING FIVE SQUARES

Q: Suppose you are allowed an extra shaded square.
Does that make it easier or harder?

Give learners time to explore this related problem. They may be surprised to discover that in essence it is exactly the same problem as the four-squares task. This is because choosing 4 of the 9 squares to shade is equivalent to choosing not to shade the other 5 . So the answers will be the 'negatives' of the answers to the four-squares task.

HOMELEARNINC

What happens if you are allowed two different colours for your shaded squares? Colour affects symmetry. For example, if you have to shade two squares red and two squares blue, what possible orders of rotational symmetry and numbers of lines of symmetry can you produce?

3 OTHER SHADINGS

Learners could work on shading just 3 squares, or just 2 or just 1 . What possible orders of rotational symmetry and numbers of lines of symmetry can they produce? Confident learners could try to put all their results together and summarise.

SUMMAFY

You could conclude the lesson with a plenary in which learners share their creations and show the different symmetries that they were able to construct. Some learners may have discovered ways of creating rotational symmetry without any lines of symmetry. Did anyone manage the opposite?

+ ABOUT

 THEEXPERT